Coverage for mlos_core/mlos_core/optimizers/flaml_optimizer.py: 97%
59 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""
6Contains the :py:class:`.FlamlOptimizer` class.
8Notes
9-----
10See the `Flaml Documentation <https://microsoft.github.io/FLAML/>`_ for more
11details.
12"""
14from typing import Dict, List, NamedTuple, Optional, Union
15from warnings import warn
17import ConfigSpace
18import numpy as np
19import pandas as pd
21from mlos_core.data_classes import Observation, Observations, Suggestion
22from mlos_core.optimizers.optimizer import BaseOptimizer
23from mlos_core.spaces.adapters.adapter import BaseSpaceAdapter
24from mlos_core.util import normalize_config
27class EvaluatedSample(NamedTuple):
28 """A named tuple representing a sample that has been evaluated."""
30 config: dict
31 score: float
34class FlamlOptimizer(BaseOptimizer):
35 """Wrapper class for FLAML Optimizer: A fast library for AutoML and tuning."""
37 # The name of an internal objective attribute that is calculated as a weighted
38 # average of the user provided objective metrics.
39 _METRIC_NAME = "FLAML_score"
41 def __init__(
42 self,
43 *, # pylint: disable=too-many-arguments
44 parameter_space: ConfigSpace.ConfigurationSpace,
45 optimization_targets: List[str],
46 objective_weights: Optional[List[float]] = None,
47 space_adapter: Optional[BaseSpaceAdapter] = None,
48 low_cost_partial_config: Optional[dict] = None,
49 seed: Optional[int] = None,
50 ):
51 """
52 Create an MLOS wrapper for FLAML.
54 Parameters
55 ----------
56 parameter_space : ConfigSpace.ConfigurationSpace
57 The parameter space to optimize.
59 optimization_targets : List[str]
60 The names of the optimization targets to minimize.
62 objective_weights : Optional[List[float]]
63 Optional list of weights of optimization targets.
65 space_adapter : BaseSpaceAdapter
66 The space adapter class to employ for parameter space transformations.
68 low_cost_partial_config : dict
69 A dictionary from a subset of controlled dimensions to the initial low-cost values.
70 More info:
71 https://microsoft.github.io/FLAML/docs/FAQ#about-low_cost_partial_config-in-tune
73 seed : Optional[int]
74 If provided, calls np.random.seed() with the provided value to set the
75 seed globally at init.
76 """
77 super().__init__(
78 parameter_space=parameter_space,
79 optimization_targets=optimization_targets,
80 objective_weights=objective_weights,
81 space_adapter=space_adapter,
82 )
84 # Per upstream documentation, it is recommended to set the seed for
85 # flaml at the start of its operation globally.
86 if seed is not None:
87 np.random.seed(seed)
89 # pylint: disable=import-outside-toplevel
90 from mlos_core.spaces.converters.flaml import (
91 FlamlDomain,
92 configspace_to_flaml_space,
93 )
95 self.flaml_parameter_space: Dict[str, FlamlDomain] = configspace_to_flaml_space(
96 self.optimizer_parameter_space
97 )
98 self.low_cost_partial_config = low_cost_partial_config
100 self.evaluated_samples: Dict[ConfigSpace.Configuration, EvaluatedSample] = {}
101 self._suggested_config: Optional[dict]
103 def _register(
104 self,
105 observations: Observations,
106 ) -> None:
107 """
108 Registers one or more configs/score pairs (observations) with the underlying
109 optimizer.
111 Parameters
112 ----------
113 observations : Observations
114 The set of config/scores to register.
115 """
116 # TODO: Implement bulk registration.
117 # (e.g., by rebuilding the base optimizer instance with all observations).
118 for observation in observations:
119 self._register_single(observation)
121 def _register_single(
122 self,
123 observation: Observation,
124 ) -> None:
125 """
126 Registers the given config and its score.
128 Parameters
129 ----------
130 observation : Observation
131 The observation to register.
132 """
133 if observation.context is not None:
134 warn(
135 f"Not Implemented: Ignoring context {list(observation.context.index)}",
136 UserWarning,
137 )
138 if observation.metadata is not None:
139 warn(
140 f"Not Implemented: Ignoring metadata {list(observation.metadata.index)}",
141 UserWarning,
142 )
144 cs_config: ConfigSpace.Configuration = observation.to_suggestion().to_configspace_config(
145 self.optimizer_parameter_space
146 )
147 if cs_config in self.evaluated_samples:
148 warn(f"Configuration {cs_config} was already registered", UserWarning)
149 self.evaluated_samples[cs_config] = EvaluatedSample(
150 config=dict(cs_config),
151 score=float(
152 np.average(observation.score.astype(float), weights=self._objective_weights)
153 ),
154 )
156 def _suggest(
157 self,
158 *,
159 context: Optional[pd.Series] = None,
160 ) -> Suggestion:
161 """
162 Suggests a new configuration.
164 Sampled at random using ConfigSpace.
166 Parameters
167 ----------
168 context : None
169 Not Yet Implemented.
171 Returns
172 -------
173 suggestion : Suggestion
174 The suggestion to be evaluated.
175 """
176 if context is not None:
177 warn(f"Not Implemented: Ignoring context {list(context.index)}", UserWarning)
178 config: dict = self._get_next_config()
179 return Suggestion(config=pd.Series(config, dtype=object), context=context, metadata=None)
181 def register_pending(self, pending: Suggestion) -> None:
182 raise NotImplementedError()
184 def _target_function(self, config: dict) -> Union[dict, None]:
185 """
186 Configuration evaluation function called by FLAML optimizer.
188 FLAML may suggest the same configuration multiple times (due to its
189 warm-start mechanism). Once FLAML suggests an unseen configuration, we
190 store it, and stop the optimization process.
192 Parameters
193 ----------
194 config: dict
195 Next configuration to be evaluated, as suggested by FLAML.
196 This config is stored internally and is returned to user, via
197 `.suggest()` method.
199 Returns
200 -------
201 result: Union[dict, None]
202 Dictionary with a single key, `FLAML_score`, if config already
203 evaluated; `None` otherwise.
204 """
205 cs_config = normalize_config(self.optimizer_parameter_space, config)
206 if cs_config in self.evaluated_samples:
207 return {self._METRIC_NAME: self.evaluated_samples[cs_config].score}
209 self._suggested_config = dict(cs_config) # Cleaned-up version of the config
210 return None # Returning None stops the process
212 def _get_next_config(self) -> dict:
213 """
214 Warm-starts a new instance of FLAML, and returns a recommended, unseen new
215 configuration.
217 Since FLAML does not provide an ask-and-tell interface, we need to create a
218 new instance of FLAML each time we get asked for a new suggestion. This is
219 suboptimal performance-wise, but works.
220 To do so, we use any previously evaluated configs to bootstrap FLAML (i.e.,
221 warm-start).
222 For more info:
223 https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function#warm-start
225 Returns
226 -------
227 result: dict
228 A dictionary with a single key that is equal to the name of the optimization target,
229 if config already evaluated; `None` otherwise.
231 Raises
232 ------
233 RuntimeError: if FLAML did not suggest a previously unseen configuration.
234 """
235 from flaml import tune # pylint: disable=import-outside-toplevel
237 # Parse evaluated configs to format used by FLAML
238 points_to_evaluate: list = []
239 evaluated_rewards: list = []
240 if len(self.evaluated_samples) > 0:
241 points_to_evaluate = [
242 dict(normalize_config(self.optimizer_parameter_space, conf))
243 for conf in self.evaluated_samples
244 ]
245 evaluated_rewards = [s.score for s in self.evaluated_samples.values()]
247 # Warm start FLAML optimizer
248 self._suggested_config = None
249 tune.run(
250 self._target_function,
251 config=self.flaml_parameter_space,
252 mode="min",
253 metric=self._METRIC_NAME,
254 points_to_evaluate=points_to_evaluate,
255 evaluated_rewards=evaluated_rewards,
256 num_samples=len(points_to_evaluate) + 1,
257 low_cost_partial_config=self.low_cost_partial_config,
258 verbose=0,
259 )
260 if self._suggested_config is None:
261 raise RuntimeError("FLAML did not produce a suggestion")
263 return self._suggested_config # type: ignore[unreachable]