Coverage for mlos_core/mlos_core/optimizers/bayesian_optimizers/smac_optimizer.py: 87%

111 statements  

« prev     ^ index     » next       coverage.py v7.6.10, created at 2025-01-21 01:50 +0000

1# 

2# Copyright (c) Microsoft Corporation. 

3# Licensed under the MIT License. 

4# 

5""" 

6Contains the wrapper class for the :py:class:`.SmacOptimizer`. 

7 

8Notes 

9----- 

10See the `SMAC3 Documentation <https://automl.github.io/SMAC3/main/index.html>`_ for 

11more details. 

12""" 

13 

14from logging import warning 

15from pathlib import Path 

16from tempfile import TemporaryDirectory 

17from typing import TYPE_CHECKING 

18from warnings import warn 

19 

20import ConfigSpace 

21import numpy.typing as npt 

22import pandas as pd 

23 

24from mlos_core.data_classes import Observation, Observations, Suggestion 

25from mlos_core.optimizers.bayesian_optimizers.bayesian_optimizer import ( 

26 BaseBayesianOptimizer, 

27) 

28from mlos_core.spaces.adapters.adapter import BaseSpaceAdapter 

29from mlos_core.spaces.adapters.identity_adapter import IdentityAdapter 

30 

31 

32class SmacOptimizer(BaseBayesianOptimizer): 

33 """Wrapper class for SMAC based Bayesian optimization.""" 

34 

35 def __init__( 

36 self, 

37 *, # pylint: disable=too-many-locals,too-many-arguments 

38 parameter_space: ConfigSpace.ConfigurationSpace, 

39 optimization_targets: list[str], 

40 objective_weights: list[float] | None = None, 

41 space_adapter: BaseSpaceAdapter | None = None, 

42 seed: int | None = 0, 

43 run_name: str | None = None, 

44 output_directory: str | None = None, 

45 max_trials: int = 100, 

46 n_random_init: int | None = None, 

47 max_ratio: float | None = None, 

48 use_default_config: bool = False, 

49 n_random_probability: float = 0.1, 

50 ): 

51 """ 

52 Instantiate a new SMAC optimizer wrapper. 

53 

54 Parameters 

55 ---------- 

56 parameter_space : ConfigSpace.ConfigurationSpace 

57 The parameter space to optimize. 

58 

59 optimization_targets : list[str] 

60 The names of the optimization targets to minimize. 

61 

62 objective_weights : Optional[list[float]] 

63 Optional list of weights of optimization targets. 

64 

65 space_adapter : BaseSpaceAdapter 

66 The space adapter class to employ for parameter space transformations. 

67 

68 seed : int | None 

69 By default SMAC uses a known seed (0) to keep results reproducible. 

70 However, if a `None` seed is explicitly provided, we let a random seed 

71 be produced by SMAC. 

72 

73 run_name : str | None 

74 Name of this run. This is used to easily distinguish across different runs. 

75 If set to `None` (default), SMAC will generate a hash from metadata. 

76 

77 output_directory : str | None 

78 The directory where SMAC output will saved. If set to `None` (default), 

79 a temporary dir will be used. 

80 

81 max_trials : int 

82 Maximum number of trials (i.e., function evaluations) to be run. Defaults to 100. 

83 Note that modifying this value directly affects the value of 

84 `n_random_init`, if latter is set to `None`. 

85 

86 n_random_init : int | None 

87 Number of points evaluated at start to bootstrap the optimizer. 

88 Default depends on max_trials and number of parameters and max_ratio. 

89 Note: it can sometimes be useful to set this to 1 when pre-warming the 

90 optimizer from historical data. See Also: 

91 :py:meth:`mlos_bench.optimizers.base_optimizer.Optimizer.bulk_register` 

92 

93 max_ratio : int | None 

94 Maximum ratio of max_trials to be random configs to be evaluated 

95 at start to bootstrap the optimizer. 

96 Useful if you want to explicitly control the number of random 

97 configs evaluated at start. 

98 

99 use_default_config : bool 

100 Whether to use the default config for the first trial after random initialization. 

101 

102 n_random_probability : float 

103 Probability of choosing to evaluate a random configuration during optimization. 

104 Defaults to `0.1`. Setting this to a higher value favors exploration over exploitation. 

105 """ 

106 super().__init__( 

107 parameter_space=parameter_space, 

108 optimization_targets=optimization_targets, 

109 objective_weights=objective_weights, 

110 space_adapter=space_adapter, 

111 ) 

112 

113 # Declare at the top because we need it in __del__/cleanup() 

114 self._temp_output_directory: TemporaryDirectory | None = None 

115 

116 # pylint: disable=import-outside-toplevel 

117 from smac import HyperparameterOptimizationFacade as Optimizer_Smac 

118 from smac import Scenario 

119 from smac.intensifier.abstract_intensifier import AbstractIntensifier 

120 from smac.main.config_selector import ConfigSelector 

121 from smac.random_design.probability_design import ProbabilityRandomDesign 

122 from smac.runhistory import TrialInfo 

123 from smac.utils.configspace import convert_configurations_to_array 

124 

125 # Save util function here as a property for later usage, also to satisfy linter 

126 self._convert_configurations_to_array = convert_configurations_to_array 

127 

128 # Store for TrialInfo instances returned by .ask() 

129 self.trial_info_map: dict[ConfigSpace.Configuration, TrialInfo] = {} 

130 

131 # The default when not specified is to use a known seed (0) to keep results reproducible. 

132 # However, if a `None` seed is explicitly provided, we let a random seed be 

133 # produced by SMAC. 

134 # https://automl.github.io/SMAC3/main/api/smac.scenario.html#smac.scenario.Scenario 

135 seed = -1 if seed is None else seed 

136 

137 # Create temporary directory for SMAC output (if none provided) 

138 if output_directory is None: 

139 # pylint: disable=consider-using-with 

140 try: 

141 # Argument added in Python 3.10 

142 self._temp_output_directory = TemporaryDirectory(ignore_cleanup_errors=True) 

143 except TypeError: 

144 self._temp_output_directory = TemporaryDirectory() 

145 output_directory = self._temp_output_directory.name 

146 assert output_directory is not None 

147 

148 if n_random_init is not None: 

149 assert isinstance(n_random_init, int) and n_random_init >= 0 

150 if n_random_init == max_trials and use_default_config: 

151 # Increase max budgeted trials to account for use_default_config. 

152 max_trials += 1 

153 

154 scenario: Scenario = Scenario( 

155 self.optimizer_parameter_space, 

156 objectives=self._optimization_targets, 

157 name=run_name, 

158 output_directory=Path(output_directory), 

159 deterministic=True, 

160 use_default_config=use_default_config, 

161 n_trials=max_trials, 

162 seed=seed or -1, # if -1, SMAC will generate a random seed internally 

163 n_workers=1, # Use a single thread for evaluating trials 

164 ) 

165 intensifier: AbstractIntensifier = Optimizer_Smac.get_intensifier( 

166 scenario, 

167 max_config_calls=1, 

168 ) 

169 config_selector: ConfigSelector = Optimizer_Smac.get_config_selector( 

170 scenario, 

171 retrain_after=1, 

172 ) 

173 

174 # TODO: When bulk registering prior configs to rewarm the optimizer, 

175 # there is a way to inform SMAC's initial design that we have 

176 # additional_configs and can set n_configs == 0. 

177 # Additionally, we may want to consider encoding those values into the 

178 # runhistory when prewarming the optimizer so that the initial design 

179 # doesn't reperform random init. 

180 # See Also: #488 

181 

182 initial_design_args: dict[str, list | int | float | Scenario] = { 

183 "scenario": scenario, 

184 # Workaround a bug in SMAC that sets a default arg to a mutable 

185 # value that can cause issues when multiple optimizers are 

186 # instantiated with the use_default_config option within the same 

187 # process that use different ConfigSpaces so that the second 

188 # receives the default config from both as an additional config. 

189 "additional_configs": [], 

190 } 

191 if n_random_init is not None: 

192 initial_design_args["n_configs"] = n_random_init 

193 if n_random_init > 0.25 * max_trials and max_ratio is None: 

194 warning( 

195 ( 

196 "Number of random initial configs (%d) is " 

197 "greater than 25%% of max_trials (%d). " 

198 "Consider setting max_ratio to avoid SMAC overriding n_random_init." 

199 ), 

200 n_random_init, 

201 max_trials, 

202 ) 

203 if max_ratio is not None: 

204 assert isinstance(max_ratio, float) and 0.0 <= max_ratio <= 1.0 

205 initial_design_args["max_ratio"] = max_ratio 

206 self._max_ratio = max_ratio 

207 

208 # Use the default InitialDesign from SMAC. 

209 # (currently SBOL instead of LatinHypercube due to better uniformity 

210 # for initial sampling which results in lower overall samples required) 

211 initial_design = Optimizer_Smac.get_initial_design( 

212 **initial_design_args, # type: ignore[arg-type] 

213 ) 

214 # initial_design = LatinHypercubeInitialDesign( 

215 # **initial_design_args, # type: ignore[arg-type] 

216 # ) 

217 

218 # Workaround a bug in SMAC that doesn't pass the seed to the random 

219 # design when generated a random_design for itself via the 

220 # get_random_design static method when random_design is None. 

221 assert isinstance(n_random_probability, float) and n_random_probability >= 0 

222 random_design = ProbabilityRandomDesign( 

223 probability=n_random_probability, 

224 seed=scenario.seed, 

225 ) 

226 

227 self.base_optimizer = Optimizer_Smac( 

228 scenario, 

229 SmacOptimizer._dummy_target_func, 

230 initial_design=initial_design, 

231 intensifier=intensifier, 

232 random_design=random_design, 

233 config_selector=config_selector, 

234 multi_objective_algorithm=Optimizer_Smac.get_multi_objective_algorithm( 

235 scenario, 

236 objective_weights=self._objective_weights, 

237 ), 

238 overwrite=True, 

239 logging_level=False, # Use the existing logger 

240 ) 

241 

242 def __del__(self) -> None: 

243 # Best-effort attempt to clean up, in case the user forgets to call .cleanup() 

244 self.cleanup() 

245 

246 @property 

247 def max_ratio(self) -> float | None: 

248 """ 

249 Gets the `max_ratio` parameter used in py:meth:`constructor <.__init__>` of this 

250 SmacOptimizer. 

251 

252 Returns 

253 ------- 

254 float 

255 """ 

256 return self._max_ratio 

257 

258 @property 

259 def n_random_init(self) -> int: 

260 """ 

261 Gets the number of random samples to use to initialize the optimizer's search 

262 space sampling. 

263 

264 Note: This may not be equal to the value passed to the initializer, due to 

265 logic present in the SMAC. 

266 

267 See Also 

268 -------- 

269 :py:attr:`.max_ratio` 

270 

271 Returns 

272 ------- 

273 int 

274 The number of random samples used to initialize the optimizer's search space sampling. 

275 """ 

276 # pylint: disable=protected-access 

277 return self.base_optimizer._initial_design._n_configs 

278 

279 @staticmethod 

280 def _dummy_target_func(config: ConfigSpace.Configuration, seed: int = 0) -> None: 

281 """ 

282 Dummy target function for SMAC optimizer. 

283 

284 Since we only use the ask-and-tell interface, this is never called. 

285 

286 Parameters 

287 ---------- 

288 config : ConfigSpace.Configuration 

289 Configuration to evaluate. 

290 

291 seed : int 

292 Random seed to use for the target function. Not actually used. 

293 """ 

294 # NOTE: Providing a target function when using the ask-and-tell interface is 

295 # an imperfection of the API -- this is planned to be fixed in some future 

296 # release: https://github.com/automl/SMAC3/issues/946 

297 raise RuntimeError("This function should never be called.") 

298 

299 def _register( 

300 self, 

301 observations: Observations, 

302 ) -> None: 

303 """ 

304 Registers one or more configs/score pairs (observations) with the underlying 

305 optimizer. 

306 

307 Parameters 

308 ---------- 

309 observations : Observations 

310 The set of config/scores to register. 

311 """ 

312 # TODO: Implement bulk registration. 

313 # (e.g., by rebuilding the base optimizer instance with all observations). 

314 for observation in observations: 

315 self._register_single(observation) 

316 

317 def _register_single( 

318 self, 

319 observation: Observation, 

320 ) -> None: 

321 """ 

322 Registers the given config and its score. 

323 

324 Parameters 

325 ---------- 

326 observation: Observation 

327 The observation to register. 

328 """ 

329 from smac.runhistory import ( # pylint: disable=import-outside-toplevel 

330 StatusType, 

331 TrialInfo, 

332 TrialValue, 

333 ) 

334 

335 if observation.context is not None: 

336 warn( 

337 f"Not Implemented: Ignoring context {list(observation.context.index)}", 

338 UserWarning, 

339 ) 

340 

341 # Retrieve previously generated TrialInfo (returned by .ask()) or create 

342 # new TrialInfo instance 

343 config = ConfigSpace.Configuration( 

344 self.optimizer_parameter_space, 

345 values=observation.config.dropna().to_dict(), 

346 ) 

347 info: TrialInfo = self.trial_info_map.get( 

348 config, 

349 TrialInfo(config=config, seed=self.base_optimizer.scenario.seed), 

350 ) 

351 value = TrialValue( 

352 cost=list(observation.score.astype(float)), 

353 time=0.0, 

354 status=StatusType.SUCCESS, 

355 ) 

356 self.base_optimizer.tell(info, value, save=False) 

357 

358 # Save optimizer once we register all configs 

359 self.base_optimizer.optimizer.save() 

360 

361 def _suggest( 

362 self, 

363 *, 

364 context: pd.Series | None = None, 

365 ) -> Suggestion: 

366 """ 

367 Suggests a new configuration. 

368 

369 Parameters 

370 ---------- 

371 context : pd.DataFrame 

372 Not Yet Implemented. 

373 

374 Returns 

375 ------- 

376 suggestion: Suggestion 

377 The suggestion to evaluate. 

378 """ 

379 if TYPE_CHECKING: 

380 # pylint: disable=import-outside-toplevel,unused-import 

381 from smac.runhistory import TrialInfo 

382 

383 if context is not None: 

384 warn(f"Not Implemented: Ignoring context {list(context.index)}", UserWarning) 

385 

386 trial: TrialInfo = self.base_optimizer.ask() 

387 trial.config.check_valid_configuration() 

388 ConfigSpace.Configuration( 

389 self.optimizer_parameter_space, 

390 values=trial.config, 

391 ).check_valid_configuration() 

392 assert trial.config.config_space == self.optimizer_parameter_space 

393 self.trial_info_map[trial.config] = trial 

394 config_sr = pd.Series(dict(trial.config), dtype=object) 

395 return Suggestion(config=config_sr, context=context, metadata=None) 

396 

397 def register_pending(self, pending: Suggestion) -> None: 

398 raise NotImplementedError() 

399 

400 def surrogate_predict(self, suggestion: Suggestion) -> npt.NDArray: 

401 if suggestion.context is not None: 

402 warn( 

403 f"Not Implemented: Ignoring context {list(suggestion.context.index)}", 

404 UserWarning, 

405 ) 

406 if self._space_adapter and not isinstance(self._space_adapter, IdentityAdapter): 

407 raise NotImplementedError("Space adapter not supported for surrogate_predict.") 

408 

409 # pylint: disable=protected-access 

410 if len(self._observations) <= self.base_optimizer._initial_design._n_configs: 

411 raise RuntimeError( 

412 "Surrogate model can make predictions *only* after " 

413 "all initial points have been evaluated " 

414 f"{len(self._observations)} <= {self.base_optimizer._initial_design._n_configs}" 

415 ) 

416 if self.base_optimizer._config_selector._model is None: 

417 raise RuntimeError("Surrogate model is not yet trained") 

418 

419 config_array = self._convert_configurations_to_array( 

420 [ 

421 ConfigSpace.Configuration( 

422 self.optimizer_parameter_space, values=suggestion.config.to_dict() 

423 ) 

424 ] 

425 ) 

426 mean_predictions, _ = self.base_optimizer._config_selector._model.predict(config_array) 

427 return mean_predictions.reshape( 

428 -1, 

429 ) 

430 

431 def acquisition_function(self, suggestion: Suggestion) -> npt.NDArray: 

432 if suggestion.context is not None: 

433 warn( 

434 f"Not Implemented: Ignoring context {list(suggestion.context.index)}", 

435 UserWarning, 

436 ) 

437 if self._space_adapter: 

438 raise NotImplementedError() 

439 

440 # pylint: disable=protected-access 

441 if self.base_optimizer._config_selector._acquisition_function is None: 

442 raise RuntimeError("Acquisition function is not yet initialized") 

443 

444 return self.base_optimizer._config_selector._acquisition_function( 

445 suggestion.config.config_to_configspace(self.optimizer_parameter_space) 

446 ).reshape( 

447 -1, 

448 ) 

449 

450 def cleanup(self) -> None: 

451 if hasattr(self, "_temp_output_directory") and self._temp_output_directory is not None: 

452 self._temp_output_directory.cleanup() 

453 self._temp_output_directory = None 

454 

455 def _to_configspace_configs(self, *, configs: pd.DataFrame) -> list[ConfigSpace.Configuration]: 

456 """ 

457 Convert a dataframe of configs to a list of ConfigSpace configs. 

458 

459 Parameters 

460 ---------- 

461 configs : pd.DataFrame 

462 Dataframe of configs / parameters. The columns are parameter names and 

463 the rows are the configs. 

464 

465 Returns 

466 ------- 

467 configs : list 

468 List of ConfigSpace configs. 

469 """ 

470 return [ 

471 ConfigSpace.Configuration(self.optimizer_parameter_space, values=config.to_dict()) 

472 for (_, config) in configs.astype("O").iterrows() 

473 ]