Coverage for mlos_bench/mlos_bench/storage/base_storage.py: 97%
139 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""
6Base interface for saving and restoring the benchmark data.
8See Also
9--------
10mlos_bench.storage.base_storage.Storage.experiments :
11 Retrieves a dictionary of the Experiments' data.
12mlos_bench.storage.base_experiment_data.ExperimentData.results_df :
13 Retrieves a pandas DataFrame of the Experiment's trials' results data.
14mlos_bench.storage.base_experiment_data.ExperimentData.trials :
15 Retrieves a dictionary of the Experiment's trials' data.
16mlos_bench.storage.base_experiment_data.ExperimentData.tunable_configs :
17 Retrieves a dictionary of the Experiment's sampled configs data.
18mlos_bench.storage.base_experiment_data.ExperimentData.tunable_config_trial_groups :
19 Retrieves a dictionary of the Experiment's trials' data, grouped by shared
20 tunable config.
21mlos_bench.storage.base_trial_data.TrialData :
22 Base interface for accessing the stored benchmark trial data.
23"""
25import logging
26from abc import ABCMeta, abstractmethod
27from datetime import datetime
28from types import TracebackType
29from typing import Any, Dict, Iterator, List, Literal, Optional, Tuple, Type
31from mlos_bench.config.schemas import ConfigSchema
32from mlos_bench.dict_templater import DictTemplater
33from mlos_bench.environments.status import Status
34from mlos_bench.services.base_service import Service
35from mlos_bench.storage.base_experiment_data import ExperimentData
36from mlos_bench.tunables.tunable_groups import TunableGroups
37from mlos_bench.util import get_git_info
39_LOG = logging.getLogger(__name__)
42class Storage(metaclass=ABCMeta):
43 """An abstract interface between the benchmarking framework and storage systems
44 (e.g., SQLite or MLFLow).
45 """
47 def __init__(
48 self,
49 config: Dict[str, Any],
50 global_config: Optional[dict] = None,
51 service: Optional[Service] = None,
52 ):
53 """
54 Create a new storage object.
56 Parameters
57 ----------
58 config : dict
59 Free-format key/value pairs of configuration parameters.
60 """
61 _LOG.debug("Storage config: %s", config)
62 self._validate_json_config(config)
63 self._service = service
64 self._config = config.copy()
65 self._global_config = global_config or {}
67 def _validate_json_config(self, config: dict) -> None:
68 """Reconstructs a basic json config that this class might have been instantiated
69 from in order to validate configs provided outside the file loading
70 mechanism.
71 """
72 json_config: dict = {
73 "class": self.__class__.__module__ + "." + self.__class__.__name__,
74 }
75 if config:
76 json_config["config"] = config
77 ConfigSchema.STORAGE.validate(json_config)
79 @property
80 @abstractmethod
81 def experiments(self) -> Dict[str, ExperimentData]:
82 """
83 Retrieve the experiments' data from the storage.
85 Returns
86 -------
87 experiments : Dict[str, ExperimentData]
88 A dictionary of the experiments' data, keyed by experiment id.
89 """
91 @abstractmethod
92 def experiment( # pylint: disable=too-many-arguments
93 self,
94 *,
95 experiment_id: str,
96 trial_id: int,
97 root_env_config: str,
98 description: str,
99 tunables: TunableGroups,
100 opt_targets: Dict[str, Literal["min", "max"]],
101 ) -> "Storage.Experiment":
102 """
103 Create a new experiment in the storage.
105 We need the `opt_target` parameter here to know what metric to retrieve
106 when we load the data from previous trials. Later we will replace it with
107 full metadata about the optimization direction, multiple objectives, etc.
109 Parameters
110 ----------
111 experiment_id : str
112 Unique identifier of the experiment.
113 trial_id : int
114 Starting number of the trial.
115 root_env_config : str
116 A path to the root JSON configuration file of the benchmarking environment.
117 description : str
118 Human-readable description of the experiment.
119 tunables : TunableGroups
120 opt_targets : Dict[str, Literal["min", "max"]]
121 Names of metrics we're optimizing for and the optimization direction {min, max}.
123 Returns
124 -------
125 experiment : Storage.Experiment
126 An object that allows to update the storage with
127 the results of the experiment and related data.
128 """
130 class Experiment(metaclass=ABCMeta):
131 # pylint: disable=too-many-instance-attributes
132 """
133 Base interface for storing the results of the experiment.
135 This class is instantiated in the `Storage.experiment()` method.
136 """
138 def __init__( # pylint: disable=too-many-arguments
139 self,
140 *,
141 tunables: TunableGroups,
142 experiment_id: str,
143 trial_id: int,
144 root_env_config: str,
145 description: str,
146 opt_targets: Dict[str, Literal["min", "max"]],
147 ):
148 self._tunables = tunables.copy()
149 self._trial_id = trial_id
150 self._experiment_id = experiment_id
151 (self._git_repo, self._git_commit, self._root_env_config) = get_git_info(
152 root_env_config
153 )
154 self._description = description
155 self._opt_targets = opt_targets
156 self._in_context = False
158 def __enter__(self) -> "Storage.Experiment":
159 """
160 Enter the context of the experiment.
162 Override the `_setup` method to add custom context initialization.
163 """
164 _LOG.debug("Starting experiment: %s", self)
165 assert not self._in_context
166 self._setup()
167 self._in_context = True
168 return self
170 def __exit__(
171 self,
172 exc_type: Optional[Type[BaseException]],
173 exc_val: Optional[BaseException],
174 exc_tb: Optional[TracebackType],
175 ) -> Literal[False]:
176 """
177 End the context of the experiment.
179 Override the `_teardown` method to add custom context teardown logic.
180 """
181 is_ok = exc_val is None
182 if is_ok:
183 _LOG.debug("Finishing experiment: %s", self)
184 else:
185 assert exc_type and exc_val
186 _LOG.warning(
187 "Finishing experiment: %s",
188 self,
189 exc_info=(exc_type, exc_val, exc_tb),
190 )
191 assert self._in_context
192 self._teardown(is_ok)
193 self._in_context = False
194 return False # Do not suppress exceptions
196 def __repr__(self) -> str:
197 return self._experiment_id
199 def _setup(self) -> None:
200 """
201 Create a record of the new experiment or find an existing one in the
202 storage.
204 This method is called by `Storage.Experiment.__enter__()`.
205 """
207 def _teardown(self, is_ok: bool) -> None:
208 """
209 Finalize the experiment in the storage.
211 This method is called by `Storage.Experiment.__exit__()`.
213 Parameters
214 ----------
215 is_ok : bool
216 True if there were no exceptions during the experiment, False otherwise.
217 """
219 @property
220 def experiment_id(self) -> str:
221 """Get the Experiment's ID."""
222 return self._experiment_id
224 @property
225 def trial_id(self) -> int:
226 """Get the current Trial ID."""
227 return self._trial_id
229 @property
230 def description(self) -> str:
231 """Get the Experiment's description."""
232 return self._description
234 @property
235 def root_env_config(self) -> str:
236 """Get the Experiment's root Environment config file path."""
237 return self._root_env_config
239 @property
240 def tunables(self) -> TunableGroups:
241 """Get the Experiment's tunables."""
242 return self._tunables
244 @property
245 def opt_targets(self) -> Dict[str, Literal["min", "max"]]:
246 """Get the Experiment's optimization targets and directions."""
247 return self._opt_targets
249 @abstractmethod
250 def merge(self, experiment_ids: List[str]) -> None:
251 """
252 Merge in the results of other (compatible) experiments trials. Used to help
253 warm up the optimizer for this experiment.
255 Parameters
256 ----------
257 experiment_ids : List[str]
258 List of IDs of the experiments to merge in.
259 """
261 @abstractmethod
262 def load_tunable_config(self, config_id: int) -> Dict[str, Any]:
263 """Load tunable values for a given config ID."""
265 @abstractmethod
266 def load_telemetry(self, trial_id: int) -> List[Tuple[datetime, str, Any]]:
267 """
268 Retrieve the telemetry data for a given trial.
270 Parameters
271 ----------
272 trial_id : int
273 Trial ID.
275 Returns
276 -------
277 metrics : List[Tuple[datetime.datetime, str, Any]]
278 Telemetry data.
279 """
281 @abstractmethod
282 def load(
283 self,
284 last_trial_id: int = -1,
285 ) -> Tuple[List[int], List[dict], List[Optional[Dict[str, Any]]], List[Status]]:
286 """
287 Load (tunable values, benchmark scores, status) to warm-up the optimizer.
289 If `last_trial_id` is present, load only the data from the (completed) trials
290 that were scheduled *after* the given trial ID. Otherwise, return data from ALL
291 merged-in experiments and attempt to impute the missing tunable values.
293 Parameters
294 ----------
295 last_trial_id : int
296 (Optional) Trial ID to start from.
298 Returns
299 -------
300 (trial_ids, configs, scores, status) : ([int], [dict], [Optional[dict]], [Status])
301 Trial ids, Tunable values, benchmark scores, and status of the trials.
302 """
304 @abstractmethod
305 def pending_trials(
306 self,
307 timestamp: datetime,
308 *,
309 running: bool,
310 ) -> Iterator["Storage.Trial"]:
311 """
312 Return an iterator over the pending trials that are scheduled to run on or
313 before the specified timestamp.
315 Parameters
316 ----------
317 timestamp : datetime.datetime
318 The time in UTC to check for scheduled trials.
319 running : bool
320 If True, include the trials that are already running.
321 Otherwise, return only the scheduled trials.
323 Returns
324 -------
325 trials : Iterator[Storage.Trial]
326 An iterator over the scheduled (and maybe running) trials.
327 """
329 def new_trial(
330 self,
331 tunables: TunableGroups,
332 ts_start: Optional[datetime] = None,
333 config: Optional[Dict[str, Any]] = None,
334 ) -> "Storage.Trial":
335 """
336 Create a new experiment run in the storage.
338 Parameters
339 ----------
340 tunables : TunableGroups
341 Tunable parameters to use for the trial.
342 ts_start : Optional[datetime.datetime]
343 Timestamp of the trial start (can be in the future).
344 config : dict
345 Key/value pairs of additional non-tunable parameters of the trial.
347 Returns
348 -------
349 trial : Storage.Trial
350 An object that allows to update the storage with
351 the results of the experiment trial run.
352 """
353 # Check that `config` is json serializable (e.g., no callables)
354 if config:
355 try:
356 # Relies on the fact that DictTemplater only accepts primitive
357 # types in it's nested dict structure walk.
358 _config = DictTemplater(config).expand_vars()
359 assert isinstance(_config, dict)
360 except ValueError as e:
361 _LOG.error("Non-serializable config: %s", config, exc_info=e)
362 raise e
363 return self._new_trial(tunables, ts_start, config)
365 @abstractmethod
366 def _new_trial(
367 self,
368 tunables: TunableGroups,
369 ts_start: Optional[datetime] = None,
370 config: Optional[Dict[str, Any]] = None,
371 ) -> "Storage.Trial":
372 """
373 Create a new experiment run in the storage.
375 Parameters
376 ----------
377 tunables : TunableGroups
378 Tunable parameters to use for the trial.
379 ts_start : Optional[datetime.datetime]
380 Timestamp of the trial start (can be in the future).
381 config : dict
382 Key/value pairs of additional non-tunable parameters of the trial.
384 Returns
385 -------
386 trial : Storage.Trial
387 An object that allows to update the storage with
388 the results of the experiment trial run.
389 """
391 class Trial(metaclass=ABCMeta):
392 # pylint: disable=too-many-instance-attributes
393 """
394 Base interface for storing the results of a single run of the experiment.
396 This class is instantiated in the `Storage.Experiment.trial()` method.
397 """
399 def __init__( # pylint: disable=too-many-arguments
400 self,
401 *,
402 tunables: TunableGroups,
403 experiment_id: str,
404 trial_id: int,
405 tunable_config_id: int,
406 opt_targets: Dict[str, Literal["min", "max"]],
407 config: Optional[Dict[str, Any]] = None,
408 ):
409 self._tunables = tunables
410 self._experiment_id = experiment_id
411 self._trial_id = trial_id
412 self._tunable_config_id = tunable_config_id
413 self._opt_targets = opt_targets
414 self._config = config or {}
415 self._status = Status.UNKNOWN
417 def __repr__(self) -> str:
418 return f"{self._experiment_id}:{self._trial_id}:{self._tunable_config_id}"
420 @property
421 def trial_id(self) -> int:
422 """ID of the current trial."""
423 return self._trial_id
425 @property
426 def tunable_config_id(self) -> int:
427 """ID of the current trial (tunable) configuration."""
428 return self._tunable_config_id
430 @property
431 def opt_targets(self) -> Dict[str, Literal["min", "max"]]:
432 """Get the Trial's optimization targets and directions."""
433 return self._opt_targets
435 @property
436 def tunables(self) -> TunableGroups:
437 """
438 Tunable parameters of the current trial.
440 (e.g., application Environment's "config")
441 """
442 return self._tunables
444 def config(self, global_config: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
445 """
446 Produce a copy of the global configuration updated with the parameters of
447 the current trial.
449 Note: this is not the target Environment's "config" (i.e., tunable
450 params), but rather the internal "config" which consists of a
451 combination of somewhat more static variables defined in the json config
452 files.
453 """
454 config = self._config.copy()
455 config.update(global_config or {})
456 config["experiment_id"] = self._experiment_id
457 config["trial_id"] = self._trial_id
458 return config
460 @property
461 def status(self) -> Status:
462 """Get the status of the current trial."""
463 return self._status
465 @abstractmethod
466 def update(
467 self,
468 status: Status,
469 timestamp: datetime,
470 metrics: Optional[Dict[str, Any]] = None,
471 ) -> Optional[Dict[str, Any]]:
472 """
473 Update the storage with the results of the experiment.
475 Parameters
476 ----------
477 status : Status
478 Status of the experiment run.
479 timestamp: datetime.datetime
480 Timestamp of the status and metrics.
481 metrics : Optional[Dict[str, Any]]
482 One or several metrics of the experiment run.
483 Must contain the (float) optimization target if the status is SUCCEEDED.
485 Returns
486 -------
487 metrics : Optional[Dict[str, Any]]
488 Same as `metrics`, but always in the dict format.
489 """
490 _LOG.info("Store trial: %s :: %s %s", self, status, metrics)
491 if status.is_succeeded():
492 assert metrics is not None
493 opt_targets = set(self._opt_targets.keys())
494 if not opt_targets.issubset(metrics.keys()):
495 _LOG.warning(
496 "Trial %s :: opt.targets missing: %s",
497 self,
498 opt_targets.difference(metrics.keys()),
499 )
500 # raise ValueError()
501 self._status = status
502 return metrics
504 @abstractmethod
505 def update_telemetry(
506 self,
507 status: Status,
508 timestamp: datetime,
509 metrics: List[Tuple[datetime, str, Any]],
510 ) -> None:
511 """
512 Save the experiment's telemetry data and intermediate status.
514 Parameters
515 ----------
516 status : Status
517 Current status of the trial.
518 timestamp: datetime.datetime
519 Timestamp of the status (but not the metrics).
520 metrics : List[Tuple[datetime.datetime, str, Any]]
521 Telemetry data.
522 """
523 _LOG.info("Store telemetry: %s :: %s %d records", self, status, len(metrics))