Coverage for mlos_bench/mlos_bench/tests/tunables/tunable_definition_test.py: 100%

147 statements  

« prev     ^ index     » next       coverage.py v7.6.9, created at 2024-12-14 01:58 +0000

1# 

2# Copyright (c) Microsoft Corporation. 

3# Licensed under the MIT License. 

4# 

5"""Unit tests for checking tunable definition rules.""" 

6 

7import json5 as json 

8import pytest 

9 

10from mlos_bench.tunables.tunable import Tunable, TunableValueTypeName 

11 

12 

13def test_tunable_name() -> None: 

14 """Check that tunable name is valid.""" 

15 with pytest.raises(ValueError): 

16 # ! characters are currently disallowed in tunable names 

17 Tunable(name="test!tunable", config={"type": "float", "range": [0, 1], "default": 0}) 

18 

19 

20def test_categorical_required_params() -> None: 

21 """Check that required parameters are present for categorical tunables.""" 

22 json_config = """ 

23 { 

24 "type": "categorical", 

25 "values_missing": ["foo", "bar", "baz"], 

26 "default": "foo" 

27 } 

28 """ 

29 config = json.loads(json_config) 

30 with pytest.raises(ValueError): 

31 Tunable(name="test", config=config) 

32 

33 

34def test_categorical_weights() -> None: 

35 """Instantiate a categorical tunable with weights.""" 

36 json_config = """ 

37 { 

38 "type": "categorical", 

39 "values": ["foo", "bar", "baz"], 

40 "values_weights": [25, 25, 50], 

41 "default": "foo" 

42 } 

43 """ 

44 config = json.loads(json_config) 

45 tunable = Tunable(name="test", config=config) 

46 assert tunable.weights == [25, 25, 50] 

47 

48 

49def test_categorical_weights_wrong_count() -> None: 

50 """Try to instantiate a categorical tunable with incorrect number of weights.""" 

51 json_config = """ 

52 { 

53 "type": "categorical", 

54 "values": ["foo", "bar", "baz"], 

55 "values_weights": [50, 50], 

56 "default": "foo" 

57 } 

58 """ 

59 config = json.loads(json_config) 

60 with pytest.raises(ValueError): 

61 Tunable(name="test", config=config) 

62 

63 

64def test_categorical_weights_wrong_values() -> None: 

65 """Try to instantiate a categorical tunable with invalid weights.""" 

66 json_config = """ 

67 { 

68 "type": "categorical", 

69 "values": ["foo", "bar", "baz"], 

70 "values_weights": [-1, 50, 50], 

71 "default": "foo" 

72 } 

73 """ 

74 config = json.loads(json_config) 

75 with pytest.raises(ValueError): 

76 Tunable(name="test", config=config) 

77 

78 

79def test_categorical_wrong_params() -> None: 

80 """Disallow range param for categorical tunables.""" 

81 json_config = """ 

82 { 

83 "type": "categorical", 

84 "values": ["foo", "bar", "foo"], 

85 "range": [0, 1], 

86 "default": "foo" 

87 } 

88 """ 

89 config = json.loads(json_config) 

90 with pytest.raises(ValueError): 

91 Tunable(name="test", config=config) 

92 

93 

94def test_categorical_disallow_special_values() -> None: 

95 """Disallow special values for categorical values.""" 

96 json_config = """ 

97 { 

98 "type": "categorical", 

99 "values": ["foo", "bar", "foo"], 

100 "special": ["baz"], 

101 "default": "foo" 

102 } 

103 """ 

104 config = json.loads(json_config) 

105 with pytest.raises(ValueError): 

106 Tunable(name="test", config=config) 

107 

108 

109def test_categorical_tunable_disallow_repeats() -> None: 

110 """Disallow duplicate values in categorical tunables.""" 

111 with pytest.raises(ValueError): 

112 Tunable( 

113 name="test", 

114 config={ 

115 "type": "categorical", 

116 "values": ["foo", "bar", "foo"], 

117 "default": "foo", 

118 }, 

119 ) 

120 

121 

122@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

123def test_numerical_tunable_disallow_null_default(tunable_type: TunableValueTypeName) -> None: 

124 """Disallow null values as default for numerical tunables.""" 

125 with pytest.raises(ValueError): 

126 Tunable( 

127 name=f"test_{tunable_type}", 

128 config={ 

129 "type": tunable_type, 

130 "range": [0, 10], 

131 "default": None, 

132 }, 

133 ) 

134 

135 

136@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

137def test_numerical_tunable_disallow_out_of_range(tunable_type: TunableValueTypeName) -> None: 

138 """Disallow out of range values as default for numerical tunables.""" 

139 with pytest.raises(ValueError): 

140 Tunable( 

141 name=f"test_{tunable_type}", 

142 config={ 

143 "type": tunable_type, 

144 "range": [0, 10], 

145 "default": 11, 

146 }, 

147 ) 

148 

149 

150@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

151def test_numerical_tunable_wrong_params(tunable_type: TunableValueTypeName) -> None: 

152 """Disallow values param for numerical tunables.""" 

153 with pytest.raises(ValueError): 

154 Tunable( 

155 name=f"test_{tunable_type}", 

156 config={ 

157 "type": tunable_type, 

158 "range": [0, 10], 

159 "values": ["foo", "bar"], 

160 "default": 0, 

161 }, 

162 ) 

163 

164 

165@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

166def test_numerical_tunable_required_params(tunable_type: TunableValueTypeName) -> None: 

167 """Disallow null values param for numerical tunables.""" 

168 json_config = f""" 

169 { 

170 "type": "{tunable_type}", 

171 "range_missing": [0, 10], 

172 "default": 0 

173 } 

174 """ 

175 config = json.loads(json_config) 

176 with pytest.raises(ValueError): 

177 Tunable(name=f"test_{tunable_type}", config=config) 

178 

179 

180@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

181def test_numerical_tunable_invalid_range(tunable_type: TunableValueTypeName) -> None: 

182 """Disallow invalid range param for numerical tunables.""" 

183 json_config = f""" 

184 { 

185 "type": "{tunable_type}", 

186 "range": [0, 10, 7], 

187 "default": 0 

188 } 

189 """ 

190 config = json.loads(json_config) 

191 with pytest.raises(AssertionError): 

192 Tunable(name=f"test_{tunable_type}", config=config) 

193 

194 

195@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

196def test_numerical_tunable_reversed_range(tunable_type: TunableValueTypeName) -> None: 

197 """Disallow reverse range param for numerical tunables.""" 

198 json_config = f""" 

199 { 

200 "type": "{tunable_type}", 

201 "range": [10, 0], 

202 "default": 0 

203 } 

204 """ 

205 config = json.loads(json_config) 

206 with pytest.raises(ValueError): 

207 Tunable(name=f"test_{tunable_type}", config=config) 

208 

209 

210@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

211def test_numerical_weights(tunable_type: TunableValueTypeName) -> None: 

212 """Instantiate a numerical tunable with weighted special values.""" 

213 json_config = f""" 

214 { 

215 "type": "{tunable_type}", 

216 "range": [0, 100], 

217 "special": [0], 

218 "special_weights": [0.1], 

219 "range_weight": 0.9, 

220 "default": 0 

221 } 

222 """ 

223 config = json.loads(json_config) 

224 tunable = Tunable(name="test", config=config) 

225 assert tunable.special == [0] 

226 assert tunable.weights == [0.1] 

227 assert tunable.range_weight == 0.9 

228 

229 

230@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

231def test_numerical_quantization(tunable_type: TunableValueTypeName) -> None: 

232 """Instantiate a numerical tunable with quantization.""" 

233 json_config = f""" 

234 { 

235 "type": "{tunable_type}", 

236 "range": [0, 100], 

237 "quantization_bins": 11, 

238 "default": 0 

239 } 

240 """ 

241 config = json.loads(json_config) 

242 tunable = Tunable(name="test", config=config) 

243 expected = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 

244 assert tunable.quantization_bins == len(expected) 

245 assert pytest.approx(list(tunable.quantized_values or []), 1e-8) == expected 

246 assert not tunable.is_log 

247 

248 

249@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

250def test_numerical_log(tunable_type: TunableValueTypeName) -> None: 

251 """Instantiate a numerical tunable with log scale.""" 

252 json_config = f""" 

253 { 

254 "type": "{tunable_type}", 

255 "range": [0, 100], 

256 "log": true, 

257 "default": 0 

258 } 

259 """ 

260 config = json.loads(json_config) 

261 tunable = Tunable(name="test", config=config) 

262 assert tunable.is_log 

263 

264 

265@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

266def test_numerical_weights_no_specials(tunable_type: TunableValueTypeName) -> None: 

267 """Raise an error if special_weights are specified but no special values.""" 

268 json_config = f""" 

269 { 

270 "type": "{tunable_type}", 

271 "range": [0, 100], 

272 "special_weights": [0.1, 0.9], 

273 "default": 0 

274 } 

275 """ 

276 config = json.loads(json_config) 

277 with pytest.raises(ValueError): 

278 Tunable(name="test", config=config) 

279 

280 

281@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

282def test_numerical_weights_non_normalized(tunable_type: TunableValueTypeName) -> None: 

283 """Instantiate a numerical tunable with non-normalized weights of the special 

284 values. 

285 """ 

286 json_config = f""" 

287 { 

288 "type": "{tunable_type}", 

289 "range": [0, 100], 

290 "special": [-1, 0], 

291 "special_weights": [0, 10], 

292 "range_weight": 90, 

293 "default": 0 

294 } 

295 """ 

296 config = json.loads(json_config) 

297 tunable = Tunable(name="test", config=config) 

298 assert tunable.special == [-1, 0] 

299 assert tunable.weights == [0, 10] # Zero weights are ok 

300 assert tunable.range_weight == 90 

301 

302 

303@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

304def test_numerical_weights_wrong_count(tunable_type: TunableValueTypeName) -> None: 

305 """Try to instantiate a numerical tunable with incorrect number of weights.""" 

306 json_config = f""" 

307 { 

308 "type": "{tunable_type}", 

309 "range": [0, 100], 

310 "special": [0], 

311 "special_weights": [0.1, 0.1, 0.8], 

312 "range_weight": 0.1, 

313 "default": 0 

314 } 

315 """ 

316 config = json.loads(json_config) 

317 with pytest.raises(ValueError): 

318 Tunable(name="test", config=config) 

319 

320 

321@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

322def test_numerical_weights_no_range_weight(tunable_type: TunableValueTypeName) -> None: 

323 """Try to instantiate a numerical tunable with weights but no range_weight.""" 

324 json_config = f""" 

325 { 

326 "type": "{tunable_type}", 

327 "range": [0, 100], 

328 "special": [0, -1], 

329 "special_weights": [0.1, 0.2], 

330 "default": 0 

331 } 

332 """ 

333 config = json.loads(json_config) 

334 with pytest.raises(ValueError): 

335 Tunable(name="test", config=config) 

336 

337 

338@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

339def test_numerical_range_weight_no_weights(tunable_type: TunableValueTypeName) -> None: 

340 """Try to instantiate a numerical tunable with specials but no range_weight.""" 

341 json_config = f""" 

342 { 

343 "type": "{tunable_type}", 

344 "range": [0, 100], 

345 "special": [0, -1], 

346 "range_weight": 0.3, 

347 "default": 0 

348 } 

349 """ 

350 config = json.loads(json_config) 

351 with pytest.raises(ValueError): 

352 Tunable(name="test", config=config) 

353 

354 

355@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

356def test_numerical_range_weight_no_specials(tunable_type: TunableValueTypeName) -> None: 

357 """Try to instantiate a numerical tunable with specials but no range_weight.""" 

358 json_config = f""" 

359 { 

360 "type": "{tunable_type}", 

361 "range": [0, 100], 

362 "range_weight": 0.3, 

363 "default": 0 

364 } 

365 """ 

366 config = json.loads(json_config) 

367 with pytest.raises(ValueError): 

368 Tunable(name="test", config=config) 

369 

370 

371@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

372def test_numerical_weights_wrong_values(tunable_type: TunableValueTypeName) -> None: 

373 """Try to instantiate a numerical tunable with incorrect number of weights.""" 

374 json_config = f""" 

375 { 

376 "type": "{tunable_type}", 

377 "range": [0, 100], 

378 "special": [0], 

379 "special_weights": [-1], 

380 "range_weight": 10, 

381 "default": 0 

382 } 

383 """ 

384 config = json.loads(json_config) 

385 with pytest.raises(ValueError): 

386 Tunable(name="test", config=config) 

387 

388 

389@pytest.mark.parametrize("tunable_type", ["int", "float"]) 

390def test_numerical_quantization_wrong(tunable_type: TunableValueTypeName) -> None: 

391 """Instantiate a numerical tunable with invalid number of quantization points.""" 

392 json_config = f""" 

393 { 

394 "type": "{tunable_type}", 

395 "range": [0, 100], 

396 "quantization_bins": 0, 

397 "default": 0 

398 } 

399 """ 

400 config = json.loads(json_config) 

401 with pytest.raises(ValueError): 

402 Tunable(name="test", config=config) 

403 

404 

405def test_bad_type() -> None: 

406 """Disallow bad types.""" 

407 json_config = """ 

408 { 

409 "type": "foo", 

410 "range": [0, 10], 

411 "default": 0 

412 } 

413 """ 

414 config = json.loads(json_config) 

415 with pytest.raises(ValueError): 

416 Tunable(name="test_bad_type", config=config)