Coverage for mlos_bench/mlos_bench/tests/optimizers/toy_optimization_loop_test.py: 100%
62 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Toy optimization loop to test the optimizers on mock benchmark environment."""
7import logging
8from typing import Tuple
10import pytest
12from mlos_bench.environments.base_environment import Environment
13from mlos_bench.environments.mock_env import MockEnv
14from mlos_bench.optimizers.base_optimizer import Optimizer
15from mlos_bench.optimizers.convert_configspace import tunable_values_to_configuration
16from mlos_bench.optimizers.mlos_core_optimizer import MlosCoreOptimizer
17from mlos_bench.optimizers.mock_optimizer import MockOptimizer
18from mlos_bench.tunables.tunable_groups import TunableGroups
19from mlos_core.data_classes import Suggestion
20from mlos_core.optimizers.bayesian_optimizers.smac_optimizer import SmacOptimizer
21from mlos_core.util import config_to_series
23# For debugging purposes output some warnings which are captured with failed tests.
24DEBUG = True
25logger = logging.debug
26if DEBUG:
27 logger = logging.warning
30def _optimize(env: Environment, opt: Optimizer) -> Tuple[float, TunableGroups]:
31 """Toy optimization loop."""
32 assert opt.not_converged()
34 while opt.not_converged():
36 with env as env_context:
38 tunables = opt.suggest()
40 logger("tunables: %s", str(tunables))
41 # pylint: disable=protected-access
42 if isinstance(opt, MlosCoreOptimizer) and isinstance(opt._opt, SmacOptimizer):
43 config = tunable_values_to_configuration(tunables)
44 config_series = config_to_series(config)
45 logger("config: %s", str(config))
46 try:
47 logger(
48 "prediction: %s",
49 opt._opt.surrogate_predict(suggestion=Suggestion(config=config_series)),
50 )
51 except RuntimeError:
52 pass
54 assert env_context.setup(tunables)
56 (status, _ts, output) = env_context.run()
57 assert status.is_succeeded()
58 assert output is not None
59 score = output["score"]
60 assert isinstance(score, float)
61 assert 60 <= score <= 120
62 logger("score: %s", str(score))
64 opt.register(tunables, status, output)
66 (best_score, best_tunables) = opt.get_best_observation()
67 assert best_score is not None and len(best_score) == 1
68 assert isinstance(best_tunables, TunableGroups)
69 return (best_score["score"], best_tunables)
72def test_mock_optimization_loop(mock_env_no_noise: MockEnv, mock_opt: MockOptimizer) -> None:
73 """Toy optimization loop with mock environment and optimizer."""
74 (score, tunables) = _optimize(mock_env_no_noise, mock_opt)
75 assert score == pytest.approx(64.9, 0.01)
76 assert tunables.get_param_values() == {
77 "vmSize": "Standard_B2ms",
78 "idle": "halt",
79 "kernel_sched_migration_cost_ns": 117026,
80 "kernel_sched_latency_ns": 149827706,
81 }
84def test_mock_optimization_loop_no_defaults(
85 mock_env_no_noise: MockEnv,
86 mock_opt_no_defaults: MockOptimizer,
87) -> None:
88 """Toy optimization loop with mock environment and optimizer."""
89 (score, tunables) = _optimize(mock_env_no_noise, mock_opt_no_defaults)
90 assert score == pytest.approx(60.97, 0.01)
91 assert tunables.get_param_values() == {
92 "vmSize": "Standard_B2s",
93 "idle": "halt",
94 "kernel_sched_migration_cost_ns": 49123,
95 "kernel_sched_latency_ns": 234760738,
96 }
99def test_flaml_optimization_loop(mock_env_no_noise: MockEnv, flaml_opt: MlosCoreOptimizer) -> None:
100 """Toy optimization loop with mock environment and FLAML optimizer."""
101 (score, tunables) = _optimize(mock_env_no_noise, flaml_opt)
102 assert score == pytest.approx(60.15, 0.01)
103 assert tunables.get_param_values() == {
104 "vmSize": "Standard_B2s",
105 "idle": "halt",
106 "kernel_sched_migration_cost_ns": -1,
107 "kernel_sched_latency_ns": 13718105,
108 }
111# @pytest.mark.skip(reason="SMAC is not deterministic")
112def test_smac_optimization_loop(mock_env_no_noise: MockEnv, smac_opt: MlosCoreOptimizer) -> None:
113 """Toy optimization loop with mock environment and SMAC optimizer."""
114 (score, tunables) = _optimize(mock_env_no_noise, smac_opt)
115 expected_score = 70.33
116 expected_tunable_values = {
117 "vmSize": "Standard_B2s",
118 "idle": "mwait",
119 "kernel_sched_migration_cost_ns": 297669,
120 "kernel_sched_latency_ns": 290365137,
121 }
122 assert score == pytest.approx(expected_score, 0.01)
123 assert tunables.get_param_values() == expected_tunable_values