Coverage for mlos_bench/mlos_bench/tests/optimizers/toy_optimization_loop_test.py: 100%
61 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-21 01:50 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-21 01:50 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Toy optimization loop to test the optimizers on mock benchmark environment."""
7import logging
9import pytest
11from mlos_bench.environments.base_environment import Environment
12from mlos_bench.environments.mock_env import MockEnv
13from mlos_bench.optimizers.base_optimizer import Optimizer
14from mlos_bench.optimizers.convert_configspace import tunable_values_to_configuration
15from mlos_bench.optimizers.mlos_core_optimizer import MlosCoreOptimizer
16from mlos_bench.optimizers.mock_optimizer import MockOptimizer
17from mlos_bench.tunables.tunable_groups import TunableGroups
18from mlos_core.data_classes import Suggestion
19from mlos_core.optimizers.bayesian_optimizers.smac_optimizer import SmacOptimizer
20from mlos_core.util import config_to_series
22# For debugging purposes output some warnings which are captured with failed tests.
23DEBUG = True
24logger = logging.debug
25if DEBUG:
26 logger = logging.warning
29def _optimize(env: Environment, opt: Optimizer) -> tuple[float, TunableGroups]:
30 """Toy optimization loop."""
31 assert opt.not_converged()
33 while opt.not_converged():
35 with env as env_context:
37 tunables = opt.suggest()
39 logger("tunables: %s", str(tunables))
40 # pylint: disable=protected-access
41 if isinstance(opt, MlosCoreOptimizer) and isinstance(opt._opt, SmacOptimizer):
42 config = tunable_values_to_configuration(tunables)
43 config_series = config_to_series(config)
44 logger("config: %s", str(config))
45 try:
46 logger(
47 "prediction: %s",
48 opt._opt.surrogate_predict(suggestion=Suggestion(config=config_series)),
49 )
50 except RuntimeError:
51 pass
53 assert env_context.setup(tunables)
55 (status, _ts, output) = env_context.run()
56 assert status.is_succeeded()
57 assert output is not None
58 score = output["score"]
59 assert isinstance(score, float)
60 assert 60 <= score <= 120
61 logger("score: %s", str(score))
63 opt.register(tunables, status, output)
65 (best_score, best_tunables) = opt.get_best_observation()
66 assert best_score is not None and len(best_score) == 1
67 assert isinstance(best_tunables, TunableGroups)
68 return (best_score["score"], best_tunables)
71def test_mock_optimization_loop(mock_env_no_noise: MockEnv, mock_opt: MockOptimizer) -> None:
72 """Toy optimization loop with mock environment and optimizer."""
73 (score, tunables) = _optimize(mock_env_no_noise, mock_opt)
74 assert score == pytest.approx(64.9, 0.01)
75 assert tunables.get_param_values() == {
76 "vmSize": "Standard_B2ms",
77 "idle": "halt",
78 "kernel_sched_migration_cost_ns": 117026,
79 "kernel_sched_latency_ns": 149827706,
80 }
83def test_mock_optimization_loop_no_defaults(
84 mock_env_no_noise: MockEnv,
85 mock_opt_no_defaults: MockOptimizer,
86) -> None:
87 """Toy optimization loop with mock environment and optimizer."""
88 (score, tunables) = _optimize(mock_env_no_noise, mock_opt_no_defaults)
89 assert score == pytest.approx(60.97, 0.01)
90 assert tunables.get_param_values() == {
91 "vmSize": "Standard_B2s",
92 "idle": "halt",
93 "kernel_sched_migration_cost_ns": 49123,
94 "kernel_sched_latency_ns": 234760738,
95 }
98def test_flaml_optimization_loop(mock_env_no_noise: MockEnv, flaml_opt: MlosCoreOptimizer) -> None:
99 """Toy optimization loop with mock environment and FLAML optimizer."""
100 (score, tunables) = _optimize(mock_env_no_noise, flaml_opt)
101 assert score == pytest.approx(60.15, 0.01)
102 assert tunables.get_param_values() == {
103 "vmSize": "Standard_B2s",
104 "idle": "halt",
105 "kernel_sched_migration_cost_ns": -1,
106 "kernel_sched_latency_ns": 13718105,
107 }
110# @pytest.mark.skip(reason="SMAC is not deterministic")
111def test_smac_optimization_loop(mock_env_no_noise: MockEnv, smac_opt: MlosCoreOptimizer) -> None:
112 """Toy optimization loop with mock environment and SMAC optimizer."""
113 (score, tunables) = _optimize(mock_env_no_noise, smac_opt)
114 expected_score = 70.33
115 expected_tunable_values = {
116 "vmSize": "Standard_B2s",
117 "idle": "mwait",
118 "kernel_sched_migration_cost_ns": 297669,
119 "kernel_sched_latency_ns": 290365137,
120 }
121 assert score == pytest.approx(expected_score, 0.01)
122 assert tunables.get_param_values() == expected_tunable_values