Coverage for mlos_core/mlos_core/tests/optimizers/optimizer_multiobj_test.py: 100%
61 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-14 01:58 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Test multi-target optimization."""
7import logging
8from typing import List, Optional, Type
10import ConfigSpace as CS
11import pandas as pd
12import pytest
14from mlos_core.data_classes import Observations, Suggestion
15from mlos_core.optimizers import BaseOptimizer, OptimizerType
16from mlos_core.tests import SEED
18_LOG = logging.getLogger(__name__)
21@pytest.mark.parametrize(
22 ("optimizer_class", "kwargs"),
23 [
24 *[(member.value, {}) for member in OptimizerType],
25 ],
26)
27def test_multi_target_opt_wrong_weights(
28 optimizer_class: Type[BaseOptimizer],
29 kwargs: dict,
30) -> None:
31 """Make sure that the optimizer raises an error if the number of objective weights
32 does not match the number of optimization targets.
33 """
34 with pytest.raises(ValueError):
35 optimizer_class(
36 parameter_space=CS.ConfigurationSpace(seed=SEED),
37 optimization_targets=["main_score", "other_score"],
38 objective_weights=[1],
39 **kwargs,
40 )
43@pytest.mark.parametrize(
44 ("objective_weights"),
45 [
46 [2, 1],
47 [0.5, 0.5],
48 None,
49 ],
50)
51@pytest.mark.parametrize(
52 ("optimizer_class", "kwargs"),
53 [
54 *[(member.value, {}) for member in OptimizerType],
55 ],
56)
57def test_multi_target_opt(
58 objective_weights: Optional[List[float]],
59 optimizer_class: Type[BaseOptimizer],
60 kwargs: dict,
61) -> None:
62 """Toy multi-target optimization problem to test the optimizers with mixed numeric
63 types to ensure that original dtypes are retained.
64 """
65 # pylint: disable=too-many-locals
66 max_iterations = 10
68 def objective(point: pd.Series) -> pd.Series:
69 # mix of hyperparameters, optimal is to select the highest possible
70 ret: pd.Series = pd.Series(
71 {
72 "main_score": point.x + point.y,
73 "other_score": point.x**2 + point.y**2,
74 }
75 )
76 return ret
78 input_space = CS.ConfigurationSpace(seed=SEED)
79 # add a mix of numeric datatypes
80 input_space.add(CS.UniformIntegerHyperparameter(name="x", lower=0, upper=5))
81 input_space.add(CS.UniformFloatHyperparameter(name="y", lower=0.0, upper=5.0))
83 optimizer = optimizer_class(
84 parameter_space=input_space,
85 optimization_targets=["main_score", "other_score"],
86 objective_weights=objective_weights,
87 **kwargs,
88 )
90 with pytest.raises(ValueError, match="No observations"):
91 optimizer.get_best_observations()
93 with pytest.raises(ValueError, match="No observations"):
94 optimizer.get_observations()
96 for _ in range(max_iterations):
97 suggestion = optimizer.suggest()
98 assert isinstance(suggestion, Suggestion)
99 assert isinstance(suggestion.config, pd.Series)
100 assert suggestion.metadata is None or isinstance(suggestion.metadata, pd.Series)
101 assert set(suggestion.config.index) == {"x", "y"}
102 # Check suggestion values are the expected dtype
103 assert isinstance(suggestion.config["x"], int)
104 assert isinstance(suggestion.config["y"], float)
105 # Check that suggestion is in the space
106 config_dict: dict = suggestion.config.to_dict()
107 test_configuration = CS.Configuration(optimizer.parameter_space, config_dict)
108 # Raises an error if outside of configuration space
109 test_configuration.check_valid_configuration()
110 # Test registering the suggested configuration with a score.
111 observation = objective(suggestion.config)
112 assert isinstance(observation, pd.Series)
113 assert set(observation.index) == {"main_score", "other_score"}
114 optimizer.register(observations=suggestion.complete(observation))
116 best_observations = optimizer.get_best_observations()
117 assert isinstance(best_observations, Observations)
118 assert isinstance(best_observations.configs, pd.DataFrame)
119 assert isinstance(best_observations.scores, pd.DataFrame)
120 assert best_observations.contexts is None
121 assert set(best_observations.configs.columns) == {"x", "y"}
122 assert set(best_observations.scores.columns) == {"main_score", "other_score"}
123 assert best_observations.configs.shape == (1, 2)
124 assert best_observations.scores.shape == (1, 2)
126 all_observations = optimizer.get_observations()
127 assert isinstance(all_observations, Observations)
128 assert isinstance(all_observations.configs, pd.DataFrame)
129 assert isinstance(all_observations.scores, pd.DataFrame)
130 assert all_observations.contexts is None
131 assert set(all_observations.configs.columns) == {"x", "y"}
132 assert set(all_observations.scores.columns) == {"main_score", "other_score"}
133 assert all_observations.configs.shape == (max_iterations, 2)
134 assert all_observations.scores.shape == (max_iterations, 2)