Coverage for mlos_bench/mlos_bench/__init__.py: 100%

2 statements  

« prev     ^ index     » next       coverage.py v7.6.9, created at 2024-12-14 01:58 +0000

1# 

2# Copyright (c) Microsoft Corporation. 

3# Licensed under the MIT License. 

4# 

5r""" 

6mlos_bench is a framework to help automate benchmarking and OS/application parameter 

7autotuning and the data management of the results. 

8 

9.. contents:: Table of Contents 

10 :depth: 3 

11 

12Overview 

13++++++++ 

14 

15``mlos_bench`` can be installed from `pypi <https://pypi.org/project/mlos-bench>`_ 

16via ``pip install mlos-bench`` and executed using the ``mlos_bench`` `command 

17<../../mlos_bench.run.usage.html>`_ using a collection of `json` `configs 

18<https://github.com/microsoft/MLOS/tree/main/mlos_bench/mlos_bench/config/>`_. 

19 

20It is intended to be used with :py:mod:`mlos_core` via 

21:py:class:`~mlos_bench.optimizers.mlos_core_optimizer.MlosCoreOptimizer` to help 

22navigate complex parameter spaces more efficiently, though other 

23:py:mod:`~mlos_bench.optimizers` are also available to help customize the search 

24process easily by simply swapping out the 

25:py:class:`~mlos_bench.optimizers.base_optimizer.Optimizer` class in the associated 

26json configs. For instance, 

27:py:class:`~mlos_bench.optimizers.grid_search_optimizer.GridSearchOptimizer` can be 

28used to perform a grid search over the parameter space instead, or no tuning at all 

29and ``mlos_bench`` can be used as only a repeatable benchmarking tool. 

30 

31Goals 

32^^^^^ 

33 

34The overall goal of the MLOS project is to enable *reproducible* and *trackable* 

35benchmarking and *efficient* autotuning for systems software. 

36 

37In this, automation of the benchmarking process is a key component that 

38``mlos_bench`` seeks to enable. 

39 

40Interaction 

41^^^^^^^^^^^ 

42 

43Users are expected to provide JSON :py:mod:`mlos_bench.config` s that instruct the 

44framework how to automate their benchmark, autotuning, or other Experiment. 

45 

46This may involve several steps such as 

47 

481. deploying a VM 

492. installing some software 

503. loading a dataset 

514. running a benchmark 

525. collecting and storing the results 

536. repeating for statistical and noise measures (we call each iteration a ``Trial``) 

547. (optionally) repeating with a different configuration (e.g., for autotuning purposes) 

558. analyzing the results 

56 

57Since many of these phases are common across different benchmarks, the framework is 

58intended to be modular and composable to allow reuse and faster development of new 

59benchmarking environments or autotuning experiments. 

60 

61Where possible, the framework will provide common configs for reuse (e.g., deploying 

62a VM on Azure, or run benchbase against a database system) to allow users to focus 

63on the specifics of their experiments. 

64 

65Where none are currently available, one can create them external to MLOS, however 

66users are also encouraged to `submit PRs or Issues 

67<https://github.com/microsoft/MLOS/CONTRIBUTING.md>`_ to add new classes or config 

68and script snippets for others to use as well. 

69 

70For more details on the configuration files, please see the documentation in the 

71:py:mod:`mlos_bench.config` module. 

72 

73Classes Overview 

74++++++++++++++++ 

75 

76The other core classes in this package are: 

77 

78- :py:mod:`~mlos_bench.environments` which provide abstractions for representing an 

79 execution environment. 

80 

81 These are generally the target of the optimization process and are used to 

82 evaluate the performance of a given configuration, though can also be used to 

83 simply run a single benchmark. They can be used, for instance, to provision a 

84 :py:mod:`VM <mlos_bench.environments.remote.vm_env>`, run benchmarks or execute 

85 any other arbitrary code on a :py:mod:`remote machine 

86 <mlos_bench.environments.remote.remote_env>`, and many other things. 

87 

88- Environments are often associated with :py:mod:`~mlos_bench.tunables` which 

89 provide a language for specifying the set of configuration parameters that can be 

90 optimized or searched over with the :py:mod:`~mlos_bench.optimizers`. 

91 

92- :py:mod:`~mlos_bench.services` provide the necessary abstractions to run interact 

93 with the :py:mod:`~mlos_bench.environments` in different settings. 

94 

95 For instance, the 

96 :py:class:`~mlos_bench.services.remote.azure.azure_vm_services.AzureVMService` can 

97 be used to run commands on Azure VMs for a remote 

98 :py:mod:`~mlos_bench.environments.remote.vm_env.VMEnv`. 

99 

100 Alternatively, one could swap out that service for 

101 :py:class:`~mlos_bench.services.remote.ssh.ssh_host_service.SshHostService` in 

102 order to target a different VM without having to change the 

103 :py:class:`~mlos_bench.environments.base_environment.Environment` configuration at 

104 all since they both implement the same 

105 :py:class:`~mlos_bench.services.types.remote_exec_type.SupportsRemoteExec` 

106 :py:mod:`Services type<mlos_bench.services.types>` interfaces. 

107 

108 This is particularly useful when running the same benchmark on different 

109 ecosystems and makes the configs more modular and composable. 

110 

111- :py:mod:`~mlos_bench.storage` which provides abstractions for storing and 

112 retrieving data from the experiments. 

113 

114 For instance, nearly any :py:mod:`SQL <mlos_bench.storage.sql>` backend that 

115 `sqlalchemy <https://www.sqlalchemy.org>`_ supports can be used. 

116 

117The data management and automation portions of experiment data is a key component of 

118MLOS as it provides a unified way to manage experiment data across different 

119Environments, enabling more reusable visualization and analysis by mapping benchmark 

120metrics into common semantic types (e.g., via `OpenTelemetry 

121<https://opentelemetry.io>`_). 

122 

123Without this most experiments are effectively siloed and require custom, and more 

124critically, non-reusable scripts to setup and later parse results and are hence 

125harder to scale to many users. 

126 

127With these features as a part of the MLOS ecosystem, benchmarking can become a 

128*service* that any developer, admin, research, etc. can use and adapt. 

129 

130See below for more information on the classes in this package. 

131 

132Notes 

133----- 

134Note that while the docstrings in this package are generated from the source code 

135and hence sometimes more focused on the implementation details, most user 

136interactions with the package will be through the `json configs 

137<https://github.com/microsoft/MLOS/tree/main/mlos_bench/mlos_bench/config/>`_. Even 

138so it may be useful to look at the source code to understand how those are 

139interpreted. 

140 

141Examples 

142-------- 

143Here is an example that shows how to run a simple benchmark using the command line. 

144 

145The entry point for these configs can be found `here 

146<https://github.com/microsoft/MLOS/blob/main/mlos_bench/mlos_bench/tests/config/cli/test-cli-local-env-bench.jsonc>`_. 

147 

148>>> from subprocess import run 

149>>> # Note: we show the command wrapped in python here for testing purposes. 

150>>> # Alternatively replace test-cli-local-env-bench.jsonc with 

151>>> # test-cli-local-env-opt.jsonc for one that does an optimization loop. 

152>>> cmd = "mlos_bench \ 

153... --config mlos_bench/mlos_bench/tests/config/cli/test-cli-local-env-bench.jsonc \ 

154... --globals experiment_test_local.jsonc \ 

155... --tunable_values tunable-values/tunable-values-local.jsonc" 

156>>> print(f"Here's the shell command you'd actually run:\n# {cmd}") 

157Here's the shell command you'd actually run: 

158# mlos_bench --config mlos_bench/mlos_bench/tests/config/cli/test-cli-local-env-bench.jsonc --globals experiment_test_local.jsonc --tunable_values tunable-values/tunable-values-local.jsonc 

159>>> # Now we run the command and check the output. 

160>>> result = run(cmd, shell=True, capture_output=True, text=True, check=True) 

161>>> assert result.returncode == 0 

162>>> lines = result.stderr.splitlines() 

163>>> first_line = lines[0] 

164>>> last_line = lines[-1] 

165>>> expected = "INFO Launch: mlos_bench" 

166>>> assert first_line.endswith(expected) 

167>>> expected = "INFO Final score: {'score': 123.4, 'total_time': 123.4, 'throughput': 1234567.0}" 

168>>> assert last_line.endswith(expected) 

169 

170Notes 

171----- 

172- `mlos_bench/README.md <https://github.com/microsoft/MLOS/tree/main/mlos_bench/>`_ 

173 for additional documentation and examples in the source tree. 

174 

175- `mlos_bench/DEVNOTES.md <https://github.com/microsoft/MLOS/tree/main/mlos_bench/mlos_bench/DEVNOTES.md>`_ 

176 for additional developer notes in the source tree. 

177 

178- There is also a working example of using ``mlos_bench`` in a *separate config 

179 repo* (the more expected case for most users) in the `sqlite-autotuning 

180 <https://github.com/Microsoft-CISL/sqlite-autotuning>`_ repo. 

181""" # pylint: disable=line-too-long # noqa: E501 

182from mlos_bench.version import VERSION 

183 

184__version__ = VERSION