mlos_viz package
mlos_viz is a framework to help visualizing, explain, and gain insights from results from the mlos_bench framework for benchmarking and optimization automation.
- class mlos_viz.MlosVizMethod(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)
Bases:
Enum
What method to use for visualizing the experiment results.
- AUTO = 'dabl'
- DABL = 'dabl'
- mlos_viz.ignore_plotter_warnings(plotter_method: MlosVizMethod = MlosVizMethod.DABL) None
Suppress some annoying warnings from third-party data visualization packages by adding them to the warnings filter.
- Parameters:
- plotter_method: MlosVizMethod
The method to use for visualizing the experiment results.
- mlos_viz.plot(exp_data: ExperimentData | None = None, *, results_df: DataFrame | None = None, objectives: Dict[str, Literal['min', 'max']] | None = None, plotter_method: MlosVizMethod = MlosVizMethod.DABL, filter_warnings: bool = True, **kwargs: Any) None
Plots the results of the experiment.
Intended to be used from a Jupyter notebook.
- Parameters:
- exp_data: ExperimentData
The experiment data to plot.
- results_dfOptional[“pandas.DataFrame”]
Optional results_df to plot. If not provided, defaults to exp_data.results_df property.
- objectivesOptional[Dict[str, Literal[“min”, “max”]]]
Optional objectives to plot. If not provided, defaults to exp_data.objectives property.
- plotter_method: MlosVizMethod
The method to use for visualizing the experiment results.
- filter_warnings: bool
Whether or not to filter some warnings from the plotter.
- kwargsdict
Remaining keyword arguments are passed along to the underlying plotter(s).