mlos_bench.optimizers.one_shot_optimizer ======================================== .. py:module:: mlos_bench.optimizers.one_shot_optimizer .. autoapi-nested-parse:: No-op optimizer for mlos_bench that proposes a single configuration. Classes ------- .. autoapisummary:: mlos_bench.optimizers.one_shot_optimizer.OneShotOptimizer Module Contents --------------- .. py:class:: OneShotOptimizer(tunables: mlos_bench.tunables.tunable_groups.TunableGroups, config: dict, global_config: dict | None = None, service: mlos_bench.services.base_service.Service | None = None) Bases: :py:obj:`mlos_bench.optimizers.mock_optimizer.MockOptimizer` No-op optimizer that proposes a single configuration and returns. Explicit configs (partial or full) are possible using configuration files. Create a new optimizer for the given configuration space defined by the tunables. :param tunables: The tunables to optimize. :type tunables: TunableGroups :param config: Free-format key/value pairs of configuration parameters to pass to the optimizer. :type config: dict :param global_config: :type global_config: dict | None :param service: :type service: Service | None .. py:method:: suggest() -> mlos_bench.tunables.tunable_groups.TunableGroups Always produce the same (initial) suggestion. .. py:property:: supports_preload :type: bool Return True if the optimizer supports pre-loading the data from previous experiments.